Generalized mirror descents in congestion games with splittable flows

نویسندگان

  • Po-An Chen
  • Chi-Jen Lu
چکیده

Different types of dynamics have been studied in repeated game play, and one of them which has received much attention recently consists of those based on “no-regret” algorithms from the area of machine learning. It is known that dynamics based on generic no-regret algorithms may not converge to Nash equilibria in general, but to a larger set of outcomes, namely coarse correlated equilibria. Moreover, convergence results based on generic no-regret algorithms typically use a weaker notion of convergence: the convergence of the average plays instead of the actual plays. Some work has been done showing that when using a specific no-regret algorithm, the well-known multiplicative updates algorithm, convergence of actual plays to equilibria can be shown and better quality of outcomes can be reached for atomic congestion games and load balancing games. Are there more cases of natural no-regret dynamics that perform well in suitable classes of games in terms of convergence and quality of outcomes? We answer this question positively by showing that when each player individually employs the mirror-descent algorithm, a well-known generic no-regret algorithm, the actual plays converge quickly to equilibria in nonatomic congestion games. This gives rise to a family of algorithms, including the multiplicative updates algorithm and the gradient descent algorithm as well as many others. Furthermore, we show that our dynamics achieves good bounds on the quality of outcomes measured by two different social costs: the average individual cost and the maximum individual cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Mirror Descents with Non-Convex Potential Functions in Atomic Congestion Games

When playing specific classes of no-regret algorithms (especially, multiplicative updates) in atomic congestion games, some previous convergence analyses were done with a standard Rosenthal potential function in terms of mixed strategy profiles (probability distributions on atomic flows), which may not be convex. In several other works, the convergence analysis was done with a convex potential ...

متن کامل

Equilibrium Computation in Atomic Splittable Singleton Congestion Games

We devise the first polynomial time algorithm computing a pure Nash equilibriumfor atomic splittable congestion games with singleton strategies and player-specificaffine cost functions. Our algorithm is purely combinatorial and computes the exactequilibrium assuming rational input. The idea is to compute a pure Nash equilibriumfor an associated integrally-splittable singleton co...

متن کامل

Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions

In this work we study weighted network congestion games with playerspecific latency functions where selfish players wish to route their traffic through a shared network. We consider both the case of splittable and unsplittable traffic. Our main findings are as follows: – For routing games on parallel links with linear latency functions without a constant term we introduce two new potential func...

متن کامل

Network Flow Problems and Congestion Games: Complexity and Approximation Results

In this thesis we examine four network flow problems arising in the study of transportation, communication, and water networks. The first of these problems is the Integer Equal Flow problem, a network flow variant in which some arcs are restricted to carry equal amounts of flow. Our main contribution is that this problem is not approximable within a factor of 2n(1− , for any fixed > 0, where n ...

متن کامل

Uniqueness of Equilibria in Atomic Splittable Polymatroid Congestion Games

We study uniqueness of Nash equilibria in atomic splittable congestion games and derive a uniqueness result based on polymatroid theory: when the strategy space of every player is a bidirectional flow polymatroid, then equilibria are unique. Bidirectional flow polymatroids are introduced as a subclass of polymatroids possessing certain exchange properties. We show that important cases such as b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014